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We analyze a new type of response function which portrays the properties of a 
system perturbed by an external field in terms of the perturbed two-point 
correlations of density fluctuations rather than in terms of perturbed averages of 
physical quantities. This "response function of the second kind" satisfies both 
fluctuation-dissipation-like theorems, relating it to three-point equilibrium 
functions, and hierarchical relationship linking it to conventional quadratic 
(rather than linear) response functions. In the equal-time limit, when the two 
density fluctuations are observed at the same time, the response function of the 
second kind is intimately connected to the two-particle correlation function of 
kinetic theory. This linkage opens an avenue for developing novel approxima- 
tion techniques for correlated many-body systems. 
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1. I N T R O D U C T I O N  

Since the i n t r o d u c t i o n  of  the  l inear  response  funct ions  as an impor t an t  
tool  in m a n y - b o d y  theory,  m a i n l y  th rough  the p ioneer ing  work  of  Pines, 
Nozieres,  Silin, a n d  Rukhadze ,  (1) the f requency-  and wave-number -  
dependent  d ie lec t r ic  funct ion a n d  re la ted response  funct ions have  bec6me 
quanti t ies  of  cen t ra l  interest  in the  po r t r aya l  of  the  physical  behav io r  of 
m a n y - b o d y  systems.  The re l a t ionsh ip  be tween the response  funct ion and 
equi l ibr ium t w o - p o i n t  cor re la t ions ,  k n o w n  as the f luc tua t ion-d iss ipa t ion  
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theorem (FDT), (2~ cast in its modern form by Kubo, has been one of the 
main ingredients in the success of the formalism. 

It is evident, however, that the conventional linear response functions 
constitute only a restricted group in the more extended family of 
generalized response functions. One direction along which the generaliza- 
tion can be pursued is to consider higher than linear terms in the generally 
nonlinear response of the system to an external perturbation. Quadratic 
and higher-order response functions have traditionally been used in non- 
linear optics, but their importance in many-body physics has been realized 
only more recently. (3-5~ Similarly to the linear case, where the Kubo 
relationships provide the important link to equilibrium quantities, a 
quadratic fluctuation-dissipation theorem (QFDT) ~6-8J plays a pivotal part 
in exploiting the information inherent in the quadratic response functions. 

The second direction along which the notion of the conventional 
response function can be expanded is arrived at by focusing on averages 
of products of several physical quantities, rather than on the average of 
a single physical quantity, to characterize the response of the system to 
the external perturbation. To be more specific, we can concentrate on 
the particle density fluctuations n(xt). While the conventional density 
response function Z relates to the response, as given by the first-order 
perturbed average (n(xt))  (1~, the generalization to two density fluctua- 
tions, taken at two different space-time points, results in considering 
(n(xl t l )  n(x2t2)) (1~. This latter certainly both differs from its equilibrium 
value (n(xl tl) n(x2 t2))(~ the familiar two-point function [related to the 
dynamical structure function S(ko))] and contains significant information 
not available from the analysis of (n(xt ) )  (~). Thus, one is led to the 
introduction of a density response function "of the second kind," say ~, 
which now connects the perturbed two-point function with the external 
perturbation. 

This novel response function appears naturally in the analysis of the 
kinetics of correlated many-body systems. Its significance lies in the wealth 
of relationships it satisfies, partly as fluctuation-dissipation theorems (i.e., 
in relation to equilibrium quantities), partly as hierarchical relationships, 
linking it to conventional quadratic response functions. 

The concept of the response function of the second kind (or, more 
briefly, "double response functions") was explicity introduced first by 
Golden and Kalman, (91 although the concept was already implicit in ref. 3. 
The notion of "responding correlations" in a different context was explored 
by Stanton and Nelkin. (1~ The concept was also used more recently, in 
connection with the derivation of the Q F D T  (6/ and in establishing a 
new approximation technique for highly correlated plasmas and electron 
liquids, c4~ A systematic study of its properties and in particular of the FDT 
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and related relationships it satisfies, has, however not been undertaken. It 
is the purpose of the present paper to do this. In Section 2, after providing 
a precise definition for the function ~, we establish the FDT that links it 
to the equilibrium three-point function. In Section 3 we combine the FDT 
of Section 2 with the statements of the QFDT (6~ in order to obtain the 
hierarchical relations between Z and quadratic response functions. 
Section 4 is devoted to the important equal-time (fluctuations taken at two 
different points in space, but at identical times), which has the most direct 
applications in many-body theory. 

Earlier discussions on the double response function were restricted to 
the classical case. The present treatment is based on the correct dynamics 
of the density operators and is quite general. As a consequence, the 
ordering of the density operators in their product is of relevance and 
any particular choice implies a certain arbitrariness. We choose 
(n(Xltl) n(x2t2)> (in this order) as the fundamental quantity, but other 
choices (e.g., symmeterized products) would be equally reasonable. We pay 
special attention to the evaluation of the classical and zero-temperature 
limits: especially compact and useful relationships emerge in these cases 
from response function hierarchies. 

2. F L U C T U A T I O N - D I S S I P A T I O N  T H E O R E M  

The linear density response functions of the second kind ~(~lz; ~2z2) 
is defined through the space-time integral that connects the averages of 
products of the density fluctuation operator n(xt) with the external 
perturbing potential energy ~3(xt); this latter is regarded as a classical 
quantity (c-number): 

(n(xltl)n(x2t2)>~ d3x f dt~,(xl-x,/1-/; x 2 - x ,  t2-t)#(xt) (1) 

or, in Fourier representation 

(nk,(o)l) nk2(co2) > "~ =.r cox ; k2o92) ~(k ~o) 

k = kl + k2 (2) 

CO = (.01 + 0 )  2 

Here and in the sequel the superscript denotes the order in the per- 
turbing potential; the superscript (1) refers to the average taken over the 
first-order perturbed ensemble. Similar relationships hold for ~(~1 tl;~2 t2), 
which connects to the total (external plus induced) average potential r 
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4 ~nd is related to the first-order average density perturbation; if ~o(k) is the 
Fourier transform of the interaction potential in the system l-q~(k)= 
4ne2/k 2 for a Coulomb system], 

r = q~(k)(n(kog) )(1) 

and thus 

~(klc01; k2092) - 1 3(k1~1 ; k2a~2 ) (3) e(k~) 

where e(kco) is the customary longitudinal linear dielectric response 
function. The functions ~ and Z are the "external" and "total" response 
functions, analogous to the conventional external 2 and total Z (also 
referred to, in a different parlance, as X and Z .... = J .  

The perturbing potential generates a term H i in the Hamiltonian, 
additional to the equilibrium part H~ 

H =  H~ + HI(t)  

HI(t)  = f n(x) #5(x t) d3x 

t, ,4, 

n(x) and n k are the operators of the density fluctuation (with nk= o = 0). 
Since we are concerned now with the time evolution of two dynamical 

quantities at two different time points in a nonstationary system, the 
appropriate approach to evaluate the correlation (nk,(tl)nk2(tz)) (1) is a 
description in terms of the Heisenberg picture operators averaged over the 
equilibrium statistical operator/2 (~ according to 

(nkl(tl) , ' , ( 1 ) -  (0) (1) (0) Tr{s [nk, ( t ,)nk 2 (t2)+n~kO)(t,) (1) t n,2 ( 2)3} (5) nk2(t2) / -- 

The choice of the ordering of the n-operators is arbitrary: studying the 
symmetric and antisymmetric projections would be equally reasonable. In 
the Heisenberg picture, the density operator nq(t) satisfies the equation of 
motion 

dn(~) i 
dt " = h  {[H~ n(~l)] + [-Hl'n~~ (6) 

The formal solution of Eq. (6) is 

dt' c~(kt')[n~)k(t'), n~~ (7) 
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Now Eq. (7) can be employed to derive a general expression for the 
first-order two-point function ( n k l ( t l ) n k 2 ( t 2 ) )  (1). By substituting it into 
Eq. (5), one obtains 

i 
) nk2(t2 ) )  (1)= - ~  f dr [O( t l  -- z){ (n_k(0) nk~(t I -- ~) nk2(t 2 -- Z))(0) (nkl(tl 

- - (nkl ( t  1 - z ) n  k(0 )nk2(tz-z))~~ } 

+ O( t  2 -- "C){ (nk l ( t  1 -- z) n_k(O)  nk2(t 2 -- Z))(O) 

-- ( n k l ( t l - - - c ) n _ k 2 ( t 2 - - z ) n k ( O ) ) ~ ~  q3(k, z) (8) 

O(v) is the step function. 
Following ref. 6, we now introduce the equilibrium dynamical three- 

point functions 

1 
S(qi, ta ; qz, t2; q3, t3) = ~  (nq~(ta) nq2(t2) nq3(t3))  (~ 

(9) 
ql + q 2 + q 3  = 0  

The ordering of density operators in S is of obvious relevance: there are six 
different S-functions, which fall into two cycles. Equation (8) now helps 
one to identify the function ~(kl ,  Zl ; k2, r2) in terms of the S-functions: 

2(kl, ~1; k2, ~2) 

in 
= --~- {O(r i ) [S(k l ,  zi; - k ,  0; k2, z s ) - S ( - k ,  0; kl ,  z~; ks, rs)]  

+O('c2)[S(kl'Cl;k2,'c2;-k, 0 ) -  S(k~, z~; - k ,  O; k2, zs)]} (10) 

In deriving (10), we have exploited the invariance of the average under 
time translation. In Fourier representation Eq. (10) is equivalent to 

~(k~o~l ; k2092) =-- ~ f dv O + ( v ) [ S ( k , , C O l - V ;  - k ,  v -  o9; k2, ~s)  

- -  S ( - k ,  v - co; kl, ~1 --  v; k2, ~ 2 )  

+ S(k I , o91; k s, o9 s - v; - k ,  v - 09) 

- S(kl, col ; - k ,  v - c o ;  k2, co 2 - v ) ]  ( 1 1  ) 

(.o --~ (.o I q--(D s 

k = k l  + k  s 
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Here 

1 i 1 

is the projection operator for generating a plus (minus) function (a reminder: 
a plus (minus) function is analytic on the upper (lower) half-plane). 

Taking the imaginary part of both sides of Eq. (11 ) and exploiting the 
fact that the S-functions in Fourier representation are real (6) and that the 
different S-functions within a cycle are related (6) to each other by 

S(bca) = e -  ah~,, S(abc) (12) 

(the abbreviated notation is rather self-explanatory, except for the conven- 
tion ko, ~o0 = - k ,  -co),  one arrives at the rather simple relationship (with 
the notation x. ~., .~,, = = =  + l =  ,etc.)  

- n { S ( 0 1 2 )  - S(120)} Z" (k l ah  ; k2~o2) = ~ 

n 
= ~  (1 - e  -ph'~ S(012) (13) 

The similarity between Eq. (13) and the conventional Kubo relationship (2) 
for the ordinary linear response function z(kco) is rather striking. 
Nevertheless, it would be erroneous to identify (13) as the fundamental 
relationship for ~. It can be easily established from (10) that ,~ is not a 
plus-function of its frequency arguments. As a result, the full frequency 
dependence of S"(o91 o~2) or of-,~((.DI(.D2) cannot be reconstituted from the 
mere knowledge of their imaginary parts ~"(c010~2) or 3"(c01~%). This is 
of, course, in contrast to.the case of Z(o~), whose frequency behavior is fully 
determined by X"(09). Thus we are led to regard Eq. (11) rather than 
Eq. (13) as the fundamental relationship constituting the FDT  for the 
response function of the second kind. 

It is interesting to note that the FDT, Eq. (11 ), does not have an easily 
tractable classical limit. The h ~ 0 limit of (11) leads to the appearance of 
rather unwieldy Poisson brackets and therefore it is of limited usefulness. 
In this respect the situation is rather similar to what happens in relation to 
the quadratic FDT for the ordinary quadratic response function (see next 
section), (6'7) where in the "primitive" from of the FDT one encounters (7) 
the same problem. 
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3. RESPONSE FONCTION OF THE SECOND KIND AND 
QUADRATIC RESPONSE FUNCTIONS 

The quadratic density response function Z(kl(.01; k2602) and 
~(klcol; k2a)2) are defined by 

1 v , r  dc~ d('~ . -  
Z(K1 (D1 ; k2 092) (J~(kl (D1) ~ ( k 2  (-02) 

_--lk~2 f d(~176 2= 2~ z ( k l f ~ 1 7 6 1 7 6 1 7 6  (14) 

k = k l + k  2 

(.0 = 0,) 1 -~ (.0 2 

Z and )? are related to each other through 

z (k l  (.01 ; k2 (-02) 
)~(kl (01 ; k2 f02) - (15) 

e(kla)l) e(k2c%) e(ko9) 

The quadratic fluctuation-dissipation theorem (QFDT) (6'7) links the three- 
point functions to the quadratic response functions. The QFDT,  combined 
with the results of the previous section, .allows one to relate the linear 
response function of the second kind E(kco) to combinations of ordinary 
quadratic functions z(k~091; k2092). We will refer to these relationships as  
response function hierarchies (RFH). Such hierarchical relationships are of 
considerable practical interest, since they can serve as starting points to 
nonperturbative approximation schemes for strongly coupled many-body 
systems.(3'4) 

The derivation is premised on expressions derived from Eqs. (42a) and 
(42b) of ref. 6; written again in a rather obvious abbreviated notation, they 
are as follows: 

4h 2 1 
S ( 1 2 0 ) -  - -  [ (1-  e+ah'~ ~'(12) 

n D(012) 

+ (e +e~' - e + eh~ f/(01 ) - (1 - e + e~'~) 2'(20)'1 

4h 2 1 
S(102) = - -  - -  [(e-~h~ e +~h~ ~'(12) 

n 0(012) 

+ (1 - -e  - B~~ 2 ' ( 0 1 ) -  (1 - e  +eh'~ 2'(20)] (16) 

4h 2 1 
S(012) = - -  - -  [ - ( 1  - -e  -t~'~ ,~'(12) 

n D(012) 

+ (1 - -e  - p'~'2) ~'(01)--. (e - t~h'' - e  - ~~ ;~'(20)] 
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with 

D(012) - 2 [sinh(/~hro) - sinh(/~hco~) - sinh(/~he)2)] 

Combination of Eq. (16) with Eq. (11) provides the desired result: 

Again, the abbreviated notation has been used; the meaning of the barred 
variables is 

1 = k l ,  O)l-V 

2=k2,  a~2-v 

0 =  -k ,  v-e9 

The expression is obtained by using the identity 

l+cosh(x)-cosh(y)-cosh(x+y)= _cth (2 )  (18) 
sinh(x + y) - sinh(x) - sinh(y) 

By exploiting the analytic properties of Z(~o,, co2), one can further reduce 
Eq. (17) to 

~(12)=-ih{[1-cth(~h2)l[f~(12)-ff*(20)] 
- I1 + cth (fib - ~ ) ]  1"~(12)- ~*(01 )]} (19) 

While in Section 2 we noted the problematic structures of the classical 
limits of the FDT relationships, both between ~(12) and S-functions on the 
one hand, and between ~(12) and the S-functions on the other, here there 
is no difficulty in establishing the classical limit of the RFH relation. The 
straightforward result is 

2 /{1  + 1 [;~(12)-)~*(01)]} (20) ~(12)=-ff ~22 [:~(12)--:~*(20)] col 

The expression is now manifestly symmetric in its arguments 1 and 2, as it 
should be. 
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It is also of interest to consider the zero-temperature limit. It is 
obvious from (19) that for the two terms in (19), respectively, only the 
~ < 0 and co~ > 0 domains survive. This could also be inferred from the 
original definition, Eq. (5), since all intermediate states have energies higher 
than the ground state. Thus one is led to 

Z(12) = -2ih{O(-co2)[f,(12)-f~*(20)] -- 0 ( c o l ) [ 2 ( 1 2 ) -  2"(01)] } (21) 

4. E Q U A L - T I M E  L IMIT  

Of special interest is the situation where the operators nkl and nk2 are 
taken at the same time, zl = z2 = z. This is the only case of interest in 
applications to kinetic theory. (3'4) We now consider in some detail the 
relevent relationships under this condition. 

We note first that in the equal-time limit the two density operators 
commute and thus ~(12) is a symmetric function of its arguments. Second, 
~(co) now indeed is, in contrast to ~(col, cos) a genuine plus-function. 
In Fourier representation the equal-time limit corresponds to projecting 
out to the co=col+co  2 line by applying the projection operator 
(1/Dr) ~ dcol 5 dco2 6(cot + co2 - co): 

~(kl ,  k2, o9) = i f f  --2zt----~n dv d/zr+(v)[S(k 1, 

and 

co--p; k 2 , / z - v ;  - k ,  v - c o )  

- S ( - k ,  v -  co; kl ,  c o - p ;  k 2 , / Z -  v )'1 (22) 

- (kl, kz, c o ) = -  n d / z [ S ( k j , c o - p ; k 2 ,  p ; - k , - c o )  

- S ( - k ,  -co;  kl ,  c o - p ;  k2, ~)] (23) 

Equation (23) can now be regarded as the equal-time FDT for the response 
function of the second kind. 

Both Eqs. (22) and (23) have simple classical limits: 

i / .  

~(kl ,  k2, co) = - ~ co/~n J dv 

1 f #n ap 

and 

dpr+(v) S(k 1, c o - p ;  k2, p - v ;  - k ,  v - co )  

d v S ( k l , c o - p ; k z , # - v ;  - k ,  r  v) (24) 

~,, 1 f - (k l ,k2 ,  c o ) = - - ~ c o 3 n  d p S ( k ~ , a ~ - p ; k > # ; - k , - c o )  (25) 
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The time domain equivalent of Eq. (24), 

,.~(k,,k2; r)=fln-~ {O(z) S(kl, 0;k2, 0; -k,  -r)} (26) 

was already implied by a result given by Golden and Kalman. (3) 
Further relationships are obtained in terms of the quadratic response 

functions by taking the equal-time projection of Eq. (19): 

~(kl, k2, co) 

=2---~ d#cth Bh [ 2 ( k ~ , c o - / ~ ; k 2 , # ) - ) ? * ( k 2 , # ; - k , - c o )  

+ 2(kl,  ~; k2, c o -  ~ ) -  2 * ( - k ,  -co;  k~, ~) ]  (27) 

Here we have exploited the fact that integrals such as 
S d~ )?(k2, #; - k ,  -co) vanish because of the plus4unction character of the 
integrand. We also note the explicit k~ ~ k 2  symmetry of (27), which is 
indeed required since the equal-time n-operators commute. 

The classical limits of (27) can be cast in an appealingly simple form. 
Making use of the Kramers-Kronig relations for )?(20) and )?(01), one 
obtains 

~(kl ,  k2, co) = 1 d~ ~ [~(kl ,  co - ~; k~, . )  + )?(kl, ~; k~, co - ~)3 

1 
+ ~  [)?*(kz, 0 ; - k ,  - c o ) + ) ? * ( - k ,  -co;k1,  0)3 (28) 

Further employing the symmetry relations ~3) obeyed by ;~, 

z(k2, O; - k ,  - c o l ) =  x*(k~, col; k2, O) 
(29) 

;~( - k ,  -coa; ka, 0) = z*(k~, 0; k2, coz) 

one can identify the rhs of Eq. (28) as the 6_ projection of a symmetrized 
kernel. Thus the classical RFH expression assumes the extremely useful 
form 

2 
~(kl, k2, co) = - ~ f d# ~ _ (/~)l-z(kl, u; k2, o9 - #) + z(k2 ;/~; kl, co - ~)-] 

(30) 

This relationship was already reported and used (4) in establishing a 
dynamical mean field theory formalism for strongly coupled Coulomb 
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systems. An essentially identical result, in a somewhat different language, 
was first obtained by Golden and KalmanJ 3) 

Finally, one can consider the zero-temperature limit of (27), with 
obvious relevance to the problem of the strongly correlated degenerate 
electron liquid. One finds 

. 
7"g [ J _  

;; } - d# [)?(k~, ~; k2, co -  ~ ) - ) ~ * ( - k ,  -co; kl, ~)] 

5. C O N C L U S I O N S  

In this paper we have introduced a new type of response function 
which portrays the response of a many-body system to an external pertur- 
bation in terms of the perturbation-induced modified averages of two 
physical quantities taken at two different space-time points, rather than in 
terms of perturbed averages of one single physical variable, as customary 
in the theory of conventional response functions. 

Although the paradigm we had in mind in the present discussion was 
that of a system with Coulomb interaction, the derivation and the results 
are not contingent upon: the assumption of any particular kind of inter- 
action. Neither is the premise that the perturbed physical quantity is the 
density an important restriction: the "second kind" equivalents of the 
conventional spin, etc., response functions can be worked out, although it 
would require the appropriate generalization of the QFDT. 

These newly introduced "response functions of the second kind" (or 
"double response functions") exhibit a rich analytic structure which links 
them both to equilibrium three-point correlations and to conventional 
quadratic (rather than linear) response functions. The first set of rela- 
tionships are analogous to the Kubo-type fluctuation-dissipation (FD) 
theorems, while the latter constitute a new type of response function 
hierarchy (RFH). 

We have focused on the density-density response -~(klcol; k2co2) to 
an external potential. We have established the FD relations linking 
~(k~col;k2co2) and its counterpart -~(k~col; kzco2) to three-point density 
correlations S(kaco~; k2co2; -k -6o )  and the RFH connecting ~(k~co~; 
k2co2) with the quadratic response function 2(k~co~; k2co2). It is primarily 
through the latter that approximation techniques can be worked out for 
the calculation of Z(k~co~; k2co2). Of special importance is the equal-time 
limit, where the density fluctuations are observed at identical times. The 

822/70/3-4-25 
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importance stems from the intimate relationship that ~ in this limit main- 
tains with the perturbed two-particle correlations which emerge in the 
analysis of kinetic equations. This linkage provides a powerful tool in the 
analysis of correlated many-body systems; the usefulness of this line of 
attack has already been demonstrated with regard to strongly coupled 
classical plasmas. The general approach developed in this paper opens the 
way to further exploit the formalism, especially in relation to the problem 
of the strongly correlated electron liquid. 
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